Fourier and Wavelet Spectral Analysis of EMG Signals in 1-km Cycling Time-Trial
نویسندگان
چکیده
Frequency domain analyses in electromyographic (EMG) signals are frequently applied to assess muscle fatigue and similar variables. Moreover, Fourier-based approaches are typically used for investigating these procedures. Nonetheless, Fourier analysis assumes the signal as stationary which is unlikely during dynamic contractions. As an alternative method, wavelet-based treatments do not assume this pattern and may be considered as more appropriate for joint time-frequency domain analysis. Based on the previous statements, the purpose of the present study was to compare the application of Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) to assess muscle fatigue in dynamic exercise of a 1-km of cycling (time-trial condition). The results of this study indicated that CWT and STFT analyses have provided similar fatigue estimates (slope) (p > 0.05). However, CWT application represents lesser dispersion ( 0.05) according to different methods, it is important to note that these responses seem to show greater values for CWT compared to STFT for 2 superficial muscles. Thereby, we are capable of considering CWT as a reliable and useful method to take into consideration when non-stationary or oscillating exercise models are evaluated.
منابع مشابه
Time-frequency Analysis of the EMG Digital Signals
In the article comparison of time-frequency spectra of EMG signals obtained by the following methods: Fast Fourier Transform, predictive analysis and wavelet analysis is presented. The EMG spectra of biceps and triceps while an adult man was flexing his arm were analysed. The advantages of the predictive analysis were shown as far as averaging of the spectra and determining the main maxima are ...
متن کاملComparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition
Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...
متن کاملAnalysis of EMG Signals Based on Wavelet Transform – A Review
Wavelet-based signal processing has become commonplace in the signal processing community over the past decade.Wavelet analysis is often very effective because it provides a simple approach for dealing with local aspects of a signal. Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. ...
متن کاملCan Wavelet Denoising Improve Motor Unit Potential Template Estimation?
Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...
متن کاملWavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کامل